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Suppression of instabilities in multiphase flow by geometric confinement
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We investigate the effect of confinement on drop formation in microfluidic devices. The presence or absence
of drop formation is studied for two immiscible coflowing liquids in a microfluidic channel, where the channel
width is considerably larger than the channel height. We show that stability of the inner fluid thread depends on
the channel geometry: when the width of the inner fluid is comparable to or larger than the channel height,
hydrodynamic instabilities are suppressed, and a stable jet that does not break into drops results; otherwise, the
inner fluid breaks into drops, in either a dripping or jetting regime. We present a model that accounts for the
data and experimentally exploit this effect of geometric confinement to induce the breakup of a jet at a spatially

defined location.

DOI: 10.1103/PhysRevE.79.056310

It has been demonstrated, both theoretically and experi-
mentally, that otherwise quiescent cylinders of fluid are un-
stable and break into drops due to the surface-tension-driven
Rayleigh-Plateau instability [1-3]. Conversely, their two-
dimensional analogs, ribbons of fluid, are stable and do not
form drops [4]. Not surprisingly, the instability threshold is
related to whether or not a perturbation increases or de-
creases the total interfacial area or energy. The transition
between stable flow and drop-generating unstable flow, espe-
cially in channels with noncircular cross sections, is of par-
ticular interest for technologies that depend on controlled
drop formation and manipulation, including many microflu-
idic applications [5-12]. For example, rapid manipulation
and control of monodisperse drops [13,14] is important for
high-throughput screening of chemical and biological pro-
cesses [15-17]. It has already been demonstrated that confin-
ing geometries affect the propagation of surface-tension-
driven instabilities. For example, the transition between two-
and three-dimensional behavior in sheared polymer blends
has been investigated [18,19], as have the qualitative effects
of channel cross section on jet stability in two-phase flows at
low Reynolds numbers [20,21]. The stability of pressure-
driven flow of two fluids in a circular pipe has been studied
and was found to be unstable when the inner fluid was less
viscous than the outer fluid [22]. However, the effects of a
confining rectangular geometry on coflowing systems, such
as those found in drop-making microfluidic devices, has not
been extensively studied. Understanding the effects of con-
fined channel geometry on fluid stability should provide fur-
ther insight into the drop-making process in microfluidic sys-
tems and should lead to enhanced control of drop generation
and manipulation.

In this paper we examine the effect of channel geometry
in coflowing systems comprised of two immiscible liquids,
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such as those commonly found in drop-making microfluidic
devices, with an emphasis on the width and height of the
channel. For these high aspect ratio systems, we find that
when the width of the inner fluid is comparable to or larger
than the height of the microfluidic channel, instabilities are
suppressed and jet breakup does not occur while for smaller
widths the device produces monodisperse drops. We account
for this transition using a theoretical model of the two-phase
flow and use changes in the confinement of a multiphase
flow to trigger drop formation at a spatially defined position.
We accomplish this control by changes in the channel height
and width. The stability regime we document here is consis-
tent with a geometric suppression of instabilities [18,20].
We use standard soft lithographic techniques [23] to fab-
ricate poly(dimethylsiloxane) (PDMS) microfluidic devices
with channel widths much larger than channel heights using
channel designs similar to those shown Fig. 1(a). All four
walls of our device channels are made from identically pre-
pared PDMS to ensure that wetting properties of all channel
walls are the same. The important geometric dimensions of
our devices are the height 4, which is kept within the interval
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FIG. 1. (a) Schematic of a typical microfluidic device used in
our experiments. The inner fluid enters through a nozzle of width d.
The inner and outer fluids have volumetric flow rates ¢; and ¢,
respectively. The devices have an outlet channel of width W. (b)—(d)
High-speed camera images of the three observed behaviors. The
microfluidic device shown in these images has dimensions
d=20 pm, W=700 um, and h=34 um. Liquids shown in these
images have the properties 7,=19.1 cP, #=34 cP, and
q,=1600 uL/hr. Scale bar=200 pum. (b) Drop formation in a
dripping regime (¢;=160 wpL/hr), (c) drop formation in a jetting
regime (g;=320 uL/hr), and (d) jetting without breaking
(g;=640 uL/hr).
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[34, 102] um, and the width W, which is kept within the
interval [100, 800] um. In all cases dimensions are selected
to ensure W= h; this results in quasi-two-dimensional outlet
channels. It is this high aspect ratio cross-sectional geometry
that has the effect of confining the fluid flow. The width d of
the nozzle for the inner fluid is within the interval [20, 160]
pm. We find that changes in d have no effect on the experi-
mental results reported here.

There are three fluid inputs to our devices: two side inlets
for the outer fluid, a silicone oil (Dow Corning Corporation)
with a viscosity 7,=19.1 or 95.9 cP, and a central inlet for
the inner fluid, a fluorocarbon oil (3M) with viscosity 7;
=3.6 or 27.4 cP. These liquids allow us to access nearly 2
orders of magnitude of viscosity ratio: 0.038 <7,/ 7,<1.4.
The silicone oil completely wets the channels; there is no
wetting of the PDMS surface by the fluorocarbon oil. Sur-
face tension vy between the fluorocarbon and silicone oils was
measured using the pendant drop method [24] and was found
to fall in the range [5.8,7.0]X 1073 N/m.

We perform our experiments by pumping the inner and
outer liquids into the devices with flow rates of ¢; and ¢,,
respectively, using glass syringes (Hamilton Gastight) driven
by constant flow-rate syringe pumps (Harvard Apparatus
PHD 2000). In our experiments the Reynolds number of the
inner fluid (g,/h7;) ranges from O(0.01-10) with flow rates
of the fluids ranging from 1 to 10 000 wL/hr. The behavior
of the fluid flow in the channel is recorded using a high-
speed camera (Phantom, Vision Research Incorporated)
mounted on an inverted microscope (Leica). Three distinct
flow behaviors are observed: drop formation in a dripping
regime [Fig. 1(b)], drop formation in a jetting regime [Fig.
1(c)], and jetting without breakup [Fig. 1(d)]. The first two
behaviors, dripping and jetting with breakup, have been ob-
served in other coflowing systems [6,8,25,26] and are de-
fined here as “unstable,” as in both cases the drop formation
is a result of hydrodynamic instabilities. The third behavior,
jetting without breakup is only observed in a confined system
and is defined here as “stable.” We emphasize that in this
regime the jet does not break, irrespective of channel length.
In our experiments the channel length is typically 2 cm and
always much larger than W.

We determine the stability of the inner fluid thread as we
vary ¢g; and ¢, over several orders of magnitude while hold-
ing the geometry and #;/ 7, fixed using #;/ 7,=0.038 and
W/h=21. We observe a transition from unstable (solid
points) to stable (open points) behavior by holding ¢, con-
stant and increasing g; or by holding ¢; constant and decreas-
ing ¢,, as shown in Fig. 2(a). We find that the boundary
separating these two regimes occurs approximately at a con-
stant g;/q,==0.58, corresponding to the straight line shown
in Fig. 2(a).

To understand these results, we consider a stream of fluid
of width w; flanked on either side by a second immiscible
fluid in a channel of rectangular cross section, as in the case
of the stable nonbreaking jet [Fig. 1(d)]. We assume fully
developed laminar pressure-driven flow, which is strictly cor-
rect if the Reynolds numbers of both liquids are low enough
and the flows are considered a distance greater than i away
from the nozzle. In the case that 4/ W= it is reasonable to
use Darcy’s law to approximate the average fluid velocities
of the two phases, v; and U,
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FIG. 2. Observed flow stability (a) as ¢; and ¢, are varied for
1i/ 17,=0.038 in a channel with dimensions h=34 um and
W=700 wm and (b) for (Wgq;;)/(hq,mn,) as a function of the inner
fluid capillary number (g;7,)/(yh*). The data include different
channel heights, ~=34,102 pum, different channel widths,
W=100,200,300,400,700,800 wm, and different nozzle dimen-
sions, d=20,160 um. Open symbols (O) indicate unstable flow
with formation of drops [Figs. 1(b) and 1(c)]; filled symbols (@)
indicate stable nonbreaking jets [Fig. 1(d)]. Symbol shapes corre-
spond to viscosity ratios: OO 7%,/%,=0.038; O %;/7,=0.19; A
71l 7,=0.29; V n;/n,=1.4.
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where « is a constant prefactor that depends on the geometry
of the device and dp/dx is the pressure gradient in the chan-
nel along the direction of flow. It is assumed that the pressure
is constant in directions perpendicular to the flow. Solving
Egs. (1) and (2) for the width of the inner stream, w;, gives
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We hypothesize that the stability of the inner fluid is de-
termined by the geometric confinement of the flow and that
surface-tension-driven breakup occurs when the width of the
inner fluid, w;, is comparable to or smaller than the channel
height 4. In this case, the inner fluid can adopt a circular
cross section and hydrodynamic instabilities are present.
When w; is greater than £ the inner fluid cannot form a
cylindrical shape and breakup does not occur; instabilities
are suppressed. This hypothesis is consistent with theory and
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observations that demonstrate that unconfined three-
dimensional cylinders of fluid break into drops due to the
Rayleigh-Plateau instability [1,2], while ribbons of fluid, the
two-dimensional analog of cylinders of fluid, are stable as all
perturbations to their shape increase their surface area [4,19].

Our hypothesis suggests that stable nonbreaking jets are
expected when w;>h. Applying this result to Eq. (3) in the
limit of W/h>1 suggests that stable jets should result when

qi7;
o'lo w i iW
o7 ; = 97 ; > 1. (4)
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The transition from unstable to stable flow occurs for a
constant value of ¢;/q, when all other variables are held
constant, establishing a linear relationship between ¢; and ¢,
which is qualitatively in agreement with experimental obser-
vations [Fig. 2(a)]. Using the experimental parameters for
the data showed in Fig. 2(a), 7,/ 7,=0.038 and W/h=21,
we find that the inner fluid should form a stable jet when
q:/q,>1.25, which is within a factor of about 2 of the ex-
perimentally determined value of 0.58.

To further confirm our theoretical stability criterion, we
perform experiments for a wide range of flow-rate
ratios, viscosity ratios, and channel aspect ratios. We plot the
results in Fig. 2(b) in terms of the variable (Wgq;7,)/(hq,7,)
against the capillary number of the inner fluid. The capillary
number for the inner fluid is known to be important for the
hydrodynamic stability for jets formed in low-Reynolds-
number two-phase flows [21]. We observe that all of the data
sets scale together, which confirms that when
(Wq;m;)/ (hg,m,)>1 the flow is a stable unbroken jet, while
when (Wgq;7,)/(hg,m,) <1 drops are formed. The transition
from stable to unstable flow does not occur at exactly
(Wq;m;)/ (hq,m,)=1 for all data sets, presumably because our
method for calculating w; is somewhat crude. These results
support our hypothesis that geometric confinement sup-
presses hydrodynamic instabilities under flow conditions by
forcing the inner fluid to assume a noncircular cross section
and, consequently, that the transition from unstable to stable
behavior occurs when w; = h. Furthermore, we show that the
stability of the flow can be controlled by varying ¢;/q, for
different viscosity ratios.

Our model also predicts the width of the jet in the stable
regime [Eq. (3)]. We compare this prediction (dashed line)
with experimental measurements of w; (solid symbols) in
Fig. 3. As expected, the width of the jet increases with in-
creasing ¢; and #; and decreases with increasing ¢, and 7,.
There is good agreement between experiment and theory for
the larger values of ¢;7;/q,7, that we explore. However, Eq.
(3) fails to predict the lower values of w; we measure. In this
regime w; is comparable to s, and the parallel-flow calcula-
tions in Egs. (1)—(3) are too simplistic, as the flow velocities
at the interface between the two fluids and at the walls be-
come important. It is then necessary to correct Eq. (3) to
include interfacial and wall effects.

To include interface and wall effects in an exact calcula-
tion requires a numerical solution because the detailed shape
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FIG. 3. Measured values of the width of the inner fluid, w,,
compared with predictions from Eq. (3) (dashed line) and Eq. (5)
(solid line) for h=34 um and W=700 um.

is unknown, so instead we identify the dominant geometric
corrections by considering a region of size & X h on either
side of the interface and beside the walls. Balancing the
shear stresses at the interface gives the interfacial velocity
v,=(n,0,+n0,)/(n,+n;) [27]. The inner and outer flow
rates are then approximately g,=o,w;h+(v,~0;)h> and g,
=0,(W=w;)h+(v;—20,)h?, respectively. We further assume
that 7;/ ,<<1, as is the case in most of our experiments, and
use Darcy’s law to obtain

i +h<1 B qﬂh)
yy  —Go0 90,) )
1+ qi7i
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This more complete expression for w; correctly describes the
width of the nonbreaking jet throughout the experimental
range, as shown by the solid line in Fig. 3. As w;/h— 1, the
experimentally measured values of w;, as well as those pre-
dicted by Eq. (5), are significantly larger than those predicted
by Eq. (3). This provides some understanding for the experi-
mentally observed stable jets below (Wq;%,)/(hg,n,)=1 in
Fig. 2(a). Alternatively, a downward bowing of the roof of
the PDMS channel, lowering the effective value of A, would
also reduce the value of (Wg;7,)/(hq,n,) at which the tran-
sition from unstable to stable flow occurs. However, the tran-
sition from unstable to stable flow is robust over several
orders of magnitude of flow rate, indicating that this is not
the underlying cause.

The understanding gained from experiments and theory
can be exploited to induce breakup of a stable jet by chang-
ing the aspect ratio of the channel and thus the confinement
of the inner fluid. Based on the parameters that control the
transition between the unstable and stable regimes, we fab-
ricated a microfluidic device where the height of the outlet
channel abruptly increases. The first section of the channel
has height #;=36 um, while the second section of the chan-
nel has height 7,=86 wm. The selection of heights guaran-
tees that there exists a range of (g;%,)/(g,7,) such that
(Waqim) ! (haq,m,) <1<(Wgq;n;)/ (h1q,7m,), which predicts a
stable jet in the first section of the outlet channel and an
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FIG. 4. High-speed images of fluid flow in a channel with an
abrupt increase in outlet channel height. 7,=3.6 cP, 7,=19.1 cP,
W=700 wm, and ¢,=800 uL/hr. A dashed line indicates the posi-
tion of the height change. Scale bar=200 wm. (a) Drop formation

at step (¢;=160 uL/hr) and (b) stable jetting for the entire channel
length (g;=320 uL/hr).

unstable flow and drop formation in the second section of the
outlet channel. The flow behavior should transition from
stable to unstable at the point where the channel height
abruptly increases.

The results of these experiments confirm our prediction of
an instability of the jet triggered by a step increase in the
channel height as shown in Fig. 4(a). This result demon-
strates that when the confinement of the inner fluid is de-
creased, in this case by increasing the channel height, a tran-
sition from stable to unstable fluid flow occurs. If, in the
same device, we further increase ¢;, so that w;>h,, we re-
cover the stable regime along the entire length of the outlet
channel, as shown in Fig. 4(b). These experiments provide
insight into a mechanism for controlling drop breakup at a
specific position in the channel [12,28].

Equation (4) suggests that it should also be possible to
transition from stable to unstable flow by decreasing the
channel width W. We fabricated a microfluidic device where
the width of the outlet channel abruptly decreases. The first
section of the channel has width W;=200 wm, while the
second section of the channel has width W,=100 wm. The
results of our experiments demonstrate, as expected,
that there exists three stability regimes: drop breakup
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FIG. 5. High-speed images of fluid flow in a channel with an
abrupt decrease in outlet channel width. 7;=3.6 cP, 7,=19.1 cP,
W;=200 wm, W,=100 wum, h=25 um, and ¢,=100 uL/hr. A
dashed line indicates the position of the width change. Scale bar
=200 um. (a) Drop formation at inlet (¢;=20 uL/hr), (b) drop
formation at width decrease (¢;=40 wL/hr), and (c) stable jetting
for the entire channel length (¢;=80 wL/hr).

at the inlet, for the case when (W,q;%,)/(hq,n,) <l
[Fig. 5(a)]; stable flow in the first section of the channel that
becomes unstable and breaks into drops when the width of
the channel abruptly changes, for the case when
(WZqini)/(hq() 770) <1< (qulﬂl)/(hqo 770) [Flg S(b)]’ and
flow that is stable along the entire length of the channel, for
the case when (W,q,;%,)/(hqg,m,)>1 [Fig. 5(c)]. Thus, we
have demonstrated that it is possible to transition from a
stable to an unstable flow by increasing the channel height
(Fig. 4) or by decreasing the channel width (Fig. 5).

In conclusion, we have shown that hydrodynamic insta-
bilities of the inner fluid of a two-phase flow can be sup-
pressed using geometric confinement and that changes in the
geometric confinement along the length of a multiphase flow
can result in drop formation at a specified position. Our study
further suggests additional routes for geometric control of
interfaces and instabilities in multiphase flows [14]. There
clearly remain opportunities for more studies of this type and
for quantification of the different instabilities we observe.
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